metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Lai-Jin Tian,^a Yu-Xi Sun,^a Min Yang^a and Seik Weng Ng^b*

^aDepartment of Chemistry, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T = 295 K Mean σ (C–C) = 0.007 Å R factor = 0.055 wR factor = 0.115 Data-to-parameter ratio = 18.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

µ-Phthalato-bis[tris(2-methyl-2-phenylpropyl)tin(IV)]

The title compound, $[Sn_2(C_{10}H_{13})_6(C_8H_4O_4)]$, crystallizes with one molecule per asymmetric unit. The phthalate dianion binds two sterically crowded triorganotin entities and both Sn atoms exist in tetrahedral environments.

Received 24 November 2004 Accepted 2 December 2004 Online 11 December 2004

Comment

As recently found, the molecule of bis[tris(2-methyl-2phenylpropyl)tin] tetrafluorophthalate lies on a twofold axis that relates one R_3 Sn entity to the other (Tian *et al.*, 2004). In the title unsubstituted phthalate, (I), all atoms lie in general positions, and both Sn atoms are four-coordinate in tetrahedral environments (Fig. 1). Bond dimensions, such as the covalent Sn-O distances, are similar to those found in the fluoro-substituted carboxylate. The less bulky bis(triphenyltin) phthalate analogue also has its metal atom in a tetrahedral geometry (James *et al.*, 1998).

Experimental

The title compound, (I), was synthesized by condensing bis[tri(2-phenyl-2-methylpropyl)tin] oxide (2.11 g, 2 mmol) with an excess of phthalic acid (0.33 g, 2 mmol) in benzene (60 ml). Water was removed with a Dean–Stark water separator, and the condensation was complete in about 6 h. The compound was purified by recrystallization from ethanol, and crystals were obtained from a chloroform–cyclohexane (1:1, ν/ν) solution of the compound in 70% yield; m.p. 405–406 K. Analysis found: C 67.78, H 6.65%; calculated for C₆₈H₈₂O₄Sn₂: C 68.02, H 6.88%. IR (KBr disc): ν_{as} (COO) 1659, ν_{s} (COO) 1348 cm⁻¹.

Crystal data

$[Sn_2(C_{10}H_{13})_6(C_8H_4O_4)]$	$D_x = 1.306 \text{ Mg m}^{-3}$
$M_r = 1200.72$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 5502
a = 9.5514 (4) Å	reflections
b = 18.0919 (8) Å	$\theta = 2.3 - 20.0^{\circ}$
c = 35.497 (2) Å	$\mu = 0.86 \text{ mm}^{-1}$
$\beta = 95.170 \ (1)^{\circ}$	T = 295 (2) K
$V = 6109.0 (5) \text{ Å}^3$	Needle, colorless
7 - 4	$0.17 \times 0.06 \times 0.05 \text{ mm}$

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Data collection

Bruker APEX area-detector	
diffractometer	
φ and ω scans	
Absorption correction: multi-scan	(
(SADABS; Bruker, 2002)	j
$T_{\min} = 0.579, T_{\max} = 0.958$	i
43 944 measured reflections	l

Refinement

Refinement on F^2
$R[F^2 > 2\sigma(F^2)] = 0.055$
$wR(F^2) = 0.115$
S = 1.02
10 778 reflections
583 parameters

10 778 independent reflections 7651 reflections with $I > 2\sigma(I)$ $R_{int} = 0.073$ $\theta_{max} = 25.0^{\circ}$ $h = -11 \rightarrow 11$ $k = -21 \rightarrow 21$ $l = -42 \rightarrow 42$

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0488P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.58 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.46 \text{ e} \text{ Å}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Sn1-O1	2.071 (3)	Sn2-O3	2.081 (3)
Sn1-C1	2.143 (5)	Sn2-C31	2.138 (5)
Sn1-C11	2.139 (5)	Sn2-C41	2.151 (5)
Sn1-C21	2.147 (5)	Sn2-C51	2.148 (5)
O1-Sn1-C1	106.8 (2)	O3-Sn2-C31	104.1 (2)
O1-Sn1-C11	101.1 (2)	O3-Sn2-C41	106.3 (2)
O1-Sn1-C21	93.4 (2)	O3-Sn2-C51	93.7 (2)
C1-Sn1-C11	119.4 (2)	C31-Sn2-C41	119.4 (2)
C1-Sn1-C21	116.7 (2)	C31-Sn2-C51	115.0 (2)
C11-Sn1-C21	113.9 (2)	C41-Sn2-C51	114.0 (2)

Phenyl rings were refined as rigid hexagons. H atoms were placed in calculated positions $[C-H = 0.93 \text{ Å} \text{ and } U_{iso}(H) = 1.2U_{eq}(C)$ for the phenyl H atoms, C-H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for the methyl H atoms, and C-H = 0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for the methylene H atoms] and were included in the refinement in the riding-model approximation.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine

Figure 1

ORTEPII (Johnson, 1976) plot of (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted.

structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL*97.

The authors thank the Natural Science Foundation of Shandong Province (grant No. Z2002F01), Qufu Normal University and the University of Malaya for supporting this work.

References

Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

- James, B. D., Kivlighon, L. M., Skelton, B. W. & White, A. H. (1998). Appl. Organomet. Chem. 12, 13–23.
- Johnson, C. K. (1976). *ORTEPII*. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Tian, L.-J., Sun, Y.-X. & Ng, S. W. (2004). Acta Cryst. E60, m1752-m1753.